Tag Archives: vfd theory

Auto tuning VFD’s

 

What is auto-tuning to a VFD?

Auto tuning a VFD is a process by which a drive measures the impedance of a motor for the purpose adjusting the motor control algorithm. The measured value may be matched to known impedance for a given motor size and used in determining voltage and current relationships at different speeds. Ultimately, this allows for more effective  driving of a motor load as well as better speed regulation specifically when running without feedback ( open loop).

When not to auto-tune?

    1. Auto-tunes are generally to be performed when the motor is cold. Auto-tuning with a hot motor may result in a variance in impedance which will subsequently cause the execution of a motor control algorithm which does not accurately match the true motor impedance.
    2. When multiple motors are connected, an auto-tune will result in the reading of multiple motor impedances connected in parallel. Some auto-tune functions match impedance readings to known typical motor impedance values ( for instance a typical NEMA B motor). As such, the reading of multiple motor impedances in parallel can not be matched to a known motor impedance value or may match a different type of motor. This results in an unsuccessful auto-tune which may be signified by a higher than usual noise levels.
Share

What is a Variable Frequency Drive or a Variable Speed Drive?

VSD’s or VFD’s , also referred to as frequency converters or adjustable speed drives, are devices that convert fixed frequency supply voltage ( typically 50Hz or 60Hz) to a variable frequency voltage. The frequency of voltage supplied to a motor determines the speed at which that motor rotates.

VSI_Topology

By Cblambert (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

What are the benefits of a drive (VFD) over a motor starter?

    • Drives protect motors from the in rush of current when starting.
    • In applications where full speed operation is not required, drive saves energy by facilitating operation at lower speeds.
    • Drives allow for speed regulation to maintain the set point of a process ( could be a pump motor speed for pressure and flow or fan speed for temperature)
    • In applications where a high torque is required at a low speed, drives are able regulate both speed and torque at its output to allow for continuous operation a low speed. An example could be a hoist where the load is suspended ( at zero speed)in the air without the engagement of brakes.
    • Drives are able to provide current and torque limiting functionality so as to prevent motor and other equipment damage.
Share